问题
解答题
已知f(x)=x3+bx2+cx+d在(-∞,0]上是增函数,在[0,2]上是减函数,且f(x)=0有三个根α,2,β(α≤2≤β).
(Ⅰ)求c的值,并求出b和d的取值范围;
(Ⅱ)求证f(1)≥2;
(Ⅲ)求|β-α|的取值范围,并写出当|β-α|取最小值时的f(x)的解析式.
答案
(Ⅰ)∵f(x)在(-∞,0]上是增函数,在(0,2]上是减函数;∴x=0是f'(x)=0的根,又∵f'(x)=3x2+2bx+c,∴f'(0)=0,∴c=0.又∵f(x)=0的根为α,2,β,∴f(2)=0,∴8+4b+d=0,又∵f'(2)≤0,
∴12+4b≤0,∴b≤-3,又d=-8-4b
∴d≥4
(Ⅱ)∵f(1)=1+b+d,f(2)=0
∴d=-8-4b且b≤-3,
∴f(1)=1+b-8-4b=-7-3b≥2
(Ⅲ)∵f(x)=0有三根α,2,β;
∴f(x)=(x-α)(x-2)(x-β)
=x3-(α+β+2)•x2-2αβ
∴
;(α+β+2=-b αβ=- d 2
∴|β-α|2=(α+β)2-4αβ
=(b+2)2+2d
=b2+4b+4-16-8b
=b2-4b-12
=(b-2)2-16
又∵b≤-3,∴|β-α|≥3
当且仅当b=-3时取最小值,此时d=4
∴f(x)=x3-3x2+4