问题
解答题
已知定义在R+上的函数f(x)有2f(x)+f(
(1)求函数f(x)的解析式; (2)设函数g(x)=
①求an,并证明
②求证:当n≥2时,Sn2>2(
|
答案
(1)2f(x)+f(
)=2x+1 x
+31 x
故2f(
)+f(x)=1 x
+x+3,2 x
两式联立可得f(x)=x+1.
(2)由(1)可得g(x)=
=(x+1)2-2x
,x2+1
联立
,y= x2+1 y=
n-x2
得交点An(
,2n2-1 2
n2
),由此得Bn(2n2+1 2
n2
,2n2+1 2
n2
),2n2-1 2
n2
所以an=|AnBn|=
=(
-2n2-1 2
n2
)2+(2n2+1 2
n2
-2n2+1 2
n2
)22n2-1 2
n2
,1 n
∵Sn-
=Sn-11 n
∴
=S 2n-1
-S 2n
+2Sn n
,1 n2
∴当n≥2时,
-S 2n
=S 2n-1
-2Sn n
,1 n2
-S 2n-1
=S 2n-2
-2Sn-1 n-1
,…1 (n-1)2
-S 22
=S 21
-2S2 n
,1 22
累加得:
=2(S 2n
+S2 2
+…+S3 3
)+1-(Sn n
+1 22
+…+1 32
)1 n2
又∵1-(
+1 22
+…+1 32
)>1-[1 n2
+1 1×2
+…+1 2×3
]1 n(n-1)
=1-(1-
+1 2
-1 2
+…+1 3
-1 n-1
)=1 n
>01 n
∴Sn2>2(
+S2 2
+…+S3 3
)Sn n