问题 解答题
已知定义在R+上的函数f(x)有2f(x)+f(
1
x
)=2x+
1
x
+3

(1)求函数f(x)的解析式;
(2)设函数g(x)=
f2(x)-2x
(x>0)
,直线y=
2
n-x
(n∈N*)分别与函数y=g(x),y=g-1(x)交于An、Bn两点(n∈N*).设an=|AnBn|,Sn为数列{an}的前n项和.
①求an,并证明
S2n-1
=
S2n
-
2Sn
n
+
1
n2
(n≥2)

②求证:当n≥2时,Sn2>2(
S2
2
+
S3
3
+…+
Sn
n
)
答案

(1)2f(x)+f(

1
x
)=2x+
1
x
+3

2f(

1
x
)+f(x)=
2
x
+x+3,

两式联立可得f(x)=x+1.

(2)由(1)可得g(x)=

(x+1)2-2x
=
x2+1

联立

y=
x2+1
y=
2
n-x

得交点An(

2n2-1
2
2
n
2n2+1
2
2
n
),由此得Bn(
2n2+1
2
2
n
2n2-1
2
2
n
),

所以an=|AnBn|=

(
2n2-1
2
2
n
-
2n2+1
2
2
n
)
2
+(
2n2+1
2
2
n
-
2n2-1
2
2
n
)
2
=
1
n

Sn-

1
n
=Sn-1

S2n-1
=
S2n
-
2Sn
n
+
1
n2

当n≥2时,

S2n
-
S2n-1
=
2Sn
n
-
1
n2

S2n-1
-
S2n-2
=
2Sn-1
n-1
-
1
(n-1)2
,…
S22
-
S21
=
2S2
n
-
1
22

累加得:

S2n
=2(
S2
2
+
S3
3
+…+
Sn
n 
)+1-(
1
22
+
1
32
+…+
1
n2
)

又∵1-(

1
22
+
1
32
+…+
1
n2
)>1-[
1
1×2
+
1
2×3
+…+
1
n(n-1)
]

=1-(1-

1
2
+
1
2
-
1
3
+…+
1
n-1
-
1
n
)=
1
n
>0

Sn2>2(

S2
2
+
S3
3
+…+
Sn
n
)

单项选择题 1.0
填空题