问题
填空题
半径为R与r的⊙A与⊙B都经过同一个点D(4,5)且与两坐标轴都相切,则R与r的关系是______.
答案
由已知中⊙A与⊙B都经过同一个点D(4,5)且与两坐标轴都相切,
故⊙A的方程可设为:(x-R)2+(y-R)2=R2,
⊙B的方程可设为:(x-r)2+(y-r)2=r2,
将D(4,5)分别代入以上两个圆的方程得:
R2-18R+41=0,r2-18r+41=0,
说明R与r是方程x2-18x+41=0的两个根.
解得:x=9±2
.10
若两圆重合,则R=r;
若两圆半径不等,则R+r=9+2
+9-210
=18.10
所以R与r的关系是R=r或R+r=18.
故答案为R=r或R+r=18.