问题 解答题
已知关于x的二次函数f(x)=ax2-4bx+1
(Ⅰ)设集合P={1,2,3},集合Q={-1,1,2,3,4},从集合P中随机取一个数作为a,从集合Q中随机取一个数作为b,求函数f(x)在区间[1,+∞)上是增函数的概率;
(Ⅱ)设点(a,b)是区域
x+y-8≤0
x>0
y>0
内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.
答案

解(Ⅰ)∵函数f(x)=ax2-4bx+1的图象的对称轴为x=

2b
a

要使f(x)=ax2-4bx+1在区间[1,+∞)上为增函数,

当且仅当a>0且x=

2b
a
≤1,

即2b≤a.

若a=1,则b=-1;

若a=2,则b=-1,1;

若a=3,则b=-1,1,

∴事件包含基本事件的个数是1+2+2=5

∴所求事件的概率为

5
15
=
1
3

(Ⅱ)由(1)知当且仅当2b≤a.且a>0时,

函数f(x)=ax2-4bx+1在区间[1,+∞)上为增函数,

依条件可知试验的全部结果所构成的区域为{(a,b)|

a+b-8≤0
a>0
b>0
}

构成所求事件的区域为三角形部分.

a+b-8=0
b=
a
2
,解得a=
16
3
,b=
8
3
,即交点坐标(
16
3
8
3
),

∴所求事件的概率为P=

1
2
×8×
8
3
1
2
×8×8
=
1
3

填空题
单项选择题