问题 解答题
设函数y=f(x)对任意的实数x,都有f(x)=
1
2
f(x-1)
,且当x∈[0,1]时,f(x)=27x2(1-x).
(1)若x∈[1,2]时,求y=f(x)的解析式;
(2)对于函数y=f(x)(x∈[0,+∞)),试问:在它的图象上是否存在点P,使得函数在点P处的切线与 x+y=0平行.若存在,那么这样的点P有几个;若不存在,说明理由.
(3)已知 n∈N*,且 xn∈x[n,n+1],记 Sn=f(x1)+f(x2)+…+f(xn),求证:0≤Sn<4.
答案

(1)∵f(x)=

1
2
f(x-1),

设x∈[1,2],则0≤x-1≤1,

∴f(x)=

1
2
f(x-1)=
27
2
(x-1)2(2-x).

(2)设x∈[n,n+1],则0≤x-n≤1,

f(x-n)=27(x-n)(n+1-x),

∴f(x)=

1
2
f(x-1)=
1
22
(x-2)
=
1
23
(x-3)
=…=
1
2n
(x-n)
=
27
2n
(x-n)2(n+1-x),

∴y=f(x),x∈[0,+∞].

f(x)=

27
2n
(x-n)2(n+1-x),x∈[n,n+1],n∈N.

∴f′(x)=

27
2n
[2(x-n)(n+1-x)-(x-n)2]

=-

27
2n
[3x2-2(3n+1)x+n(3n+2)]

=-

81
2n
[x2-2(n+
1
3
)x+n(n+
2
3
)]

=-

81
2n
(x-n)[x-(n+
2
3
)],

∴问题转化为判断关于x的方程-

81
2n
(x-n)[x-(n+
2
3
)]=-1在[n,n+1],n∈N内是否有解,

(x-n)[x-(n+

2
3
)]=-1在[n,n+1],n∈N内是否有解,

令g(x)=(x-n)[x-(n+

2
3
)]-
2n
81
=xn-
6n+2
3
x+
3n2+2n
3
-
2n
81

函数y=g(x)的图象是开口向上的抛物线,

其对称轴是直线x=n+

1
3
∈[n,n+1],

判别式△=(-

6n+2
3
)2-4(
3n2+2n
3
-
2n
81
)=
4
9
+
2n+2
81
>0

且g(n)=-

2n
81
<0,g(n+1)=
1
3
-
2n
81
=
27-2n
81

①当0≤n≤4,n∈N时,∵g(n+1)>0,

∴方程(x-n)[x-(n+

2
3
)]=-1分别在区间[0,1],[1,2],[2,3],[3,4],[4,5]上各有一解,

即存在5个满足题意的点P.

②当n≥5(n∈N)时,∵g(n+1)<0,

∴方程(x-n)[x-(n+

2
3
)]=-1在区间[n,n+1],n∈N,n≥5上无解.

综上所述,满足题意的点P有5个.

(3)由(2)知f′(x)=-

81
2n
(x-n)[x-(n+
2
3
)],

∴当x∈(n,n+

2
3
)时,f′(x)>0,f(x)在(n+
2
3
,n+1)上递减,

∴当x∈[n,n+1],n∈N时,f(x)max=f(n+

2
3
)=
1
2n-1

又f(x)≥f(n)=f(n+1)=0,

∴对任意的n∈N*,当xn∈[n,n+1]时,都有0≤f(xn)≤

1
2n-1

∴Sn=f(x1)+f(x2)+…+f(xn

1
2-1
+
1
20
+
1
2
+
1
22
+…+
1
2n-2

=4-

1
2n-1
<4,

∴0≤Sn<4.

单项选择题
单项选择题