(1)∵f(x)=f(x-1),
设x∈[1,2],则0≤x-1≤1,
∴f(x)=f(x-1)=(x-1)2(2-x).
(2)设x∈[n,n+1],则0≤x-n≤1,
f(x-n)=27(x-n)(n+1-x),
∴f(x)=f(x-1)=(x-2)=(x-3)=…=(x-n)=(x-n)2(n+1-x),
∴y=f(x),x∈[0,+∞].
f(x)=(x-n)2(n+1-x),x∈[n,n+1],n∈N.
∴f′(x)=[2(x-n)(n+1-x)-(x-n)2]
=-[3x2-2(3n+1)x+n(3n+2)]
=-[x2-2(n+)x+n(n+)]
=-(x-n)[x-(n+)],
∴问题转化为判断关于x的方程-(x-n)[x-(n+)]=-1在[n,n+1],n∈N内是否有解,
即(x-n)[x-(n+)]=-1在[n,n+1],n∈N内是否有解,
令g(x)=(x-n)[x-(n+)]-=xn-x+-,
函数y=g(x)的图象是开口向上的抛物线,
其对称轴是直线x=n+∈[n,n+1],
判别式△=(-)2-4(-)=+>0,
且g(n)=-<0,g(n+1)=-=.
①当0≤n≤4,n∈N时,∵g(n+1)>0,
∴方程(x-n)[x-(n+)]=-1分别在区间[0,1],[1,2],[2,3],[3,4],[4,5]上各有一解,
即存在5个满足题意的点P.
②当n≥5(n∈N)时,∵g(n+1)<0,
∴方程(x-n)[x-(n+)]=-1在区间[n,n+1],n∈N,n≥5上无解.
综上所述,满足题意的点P有5个.
(3)由(2)知f′(x)=-(x-n)[x-(n+)],
∴当x∈(n,n+)时,f′(x)>0,f(x)在(n+,n+1)上递减,
∴当x∈[n,n+1],n∈N时,f(x)max=f(n+)=,
又f(x)≥f(n)=f(n+1)=0,
∴对任意的n∈N*,当xn∈[n,n+1]时,都有0≤f(xn)≤,
∴Sn=f(x1)+f(x2)+…+f(xn)
≤++++…+
=4-<4,
∴0≤Sn<4.