问题 解答题
已知点P在曲线C:y=
1
x
 (x>1)
上,曲线C在点P处的切线与函数y=kx(k>0)的图象交于点A,与x轴交于点B,设点P的横坐标为t,点A、B的横坐标分别为xA、xB,记f(t)=xA•xB
(1)求f(t)的解析式;
(2)设数列{an}满足a1=1,an=f(
an-1
) (n≥2 且 x∈N*)
,求数列{an}的通项公式;
(3)在 (2)的条件下,当1<k<3时,证明不等式a1+a2+…+an
3n-8k
k
答案

(1)∵y=

1
x

y=-

1
x2

∴切线方程为y-

1
t
=-
1
t2
(x-t),

与y=kx联立得:xA=

2t
kt2+1
,令y=0,得:xB=2t,

∵f(t)=xA•xB

f(t)=

4t2
kt2+1
(k>0,t>1).

(2)由an=f(

an-1
)得:an=
4an-1
kan-1+1

1
an
=
kan-1+1
4an-1
=
1
4
1
an-1
+
k
4

bn=

1
an
-
k
3

bn=

1
an
-
k
3
=
1
4
(
1
an-1
-
k
3
)=
1
4
bn-1

∵a1=1,

∴①当k=3时,b1=

1
a1
-1=0,

∴{bn}是以0为首项的常数数列,

∴an=1.

②当k≠3时,{bn}是以1-

k
3
为首项,
1
4
为公比的等比数列,

bn=(1-

k
3
)(
1
4
)n-1

解得an=

3•4n-1
k•4n-1+3-k

由①②,得an=

3•4n-1
k•4n-1+3-k

(3)∵an-

3
k
=
3•4n-1
k•4n-1+3-k
-
3
k

=

3k-9
k(k•4n-1+3-k)

=

3k-9
k24n-1+k(3-k)

∵1<k<3,

an-

3
k
3k-9
k2
1
4n-1

a1+a2+…+an-

3n-8k
k

=(a1-

3
k
)+(a2-
3
k
)+…+(an-
3
k

=

3k-9
k2
(1+
1
4
+…+
1
4n-1
)+8

=

4(k-3)
k2
[1-(
1
4
)
n
]+8

4(k-3)
k2
+8

=

4(2k+3)(k-1)
k2

∵1<k<3,

4(2k+3)(k-1)
k2
>0.

a1+a2+…+an

3n-8k
k

口语交际,情景问答题
选择题