问题
选择题
使得(x2-4)(x2-1)=(x2+3x+2)(x2-8x+7)成立的x值的个数是( )
A.4
B.3
C.2
D.1
答案
∵(x2-4)(x2-1)=(x2+3x+2)(x2-8x+7),
∴(x2-4)(x2-1)-(x2+3x+2)(x2-8x+7)=0,
即(x+2)(x-2)(x+1)(x-1)-(x+1)(x+2)(x-1)(x-7)=0,
(x+1)(x-1)(x+2)(x-2-x+7)=0,
∴(x+1)(x-1)(x+2)=0,
当x=-1,x=1,x=-2时等式成立.
使等式成立的x值的共3个.
故选B.