已知数列{an}中,a1=1,an+1an-1=anan-1+an2(n∈N+,n≥2),且
(Ⅰ)求证:k=1; (Ⅱ)设g(x)=
(Ⅲ)求证:不等式f(2)<
|
(I)证明:∵
=kn+1,an+1 an
∴
=a2=k+1,a2 a1
又∵a1=1,an+1an-1=anan-1+an2(n∈N+,n≥2)
则a3a1=a2a1+a22,即
=a2+1,又a3 a2
=2k+1,∴a2=2k.a3 a2
∴k+1=2k,解得k=1.
(2)∵
=n+1,∴an=an+1 an
•an an-1
…an-1 an-2
•a1=n•(n-1)…2•1=n!a2 a1
∵g(x)=
=nxn-1anxn-1 (n-1)!
∴当x=1时,f(x)=f(1)=1+2+3+…+n=
,n(n+1) 2
当x≠1时,f(x)=1+2x+3x2+…+nxn-1.
得xf(x)=x+2x2+3x3+…+(n-1)xn-1+nxn
两式相减得(1-x)f(x)=1+x+x2+…+xn-1-nxn=
-nxn1-xn 1-x
∴f(x)=
-1-xn (1-x)2 nxn 1-x
综上所述:f(x)=
.
,x=1n(n+1) 2
-1-xn (1-x)2
,x≠1nxn 1-x
(3)利用(2)中f(x)的表达式,取x=2,
则f(2)=
-1-2n (1-2)2
=(n-1)•2n+1,n•2n 1-2
又
g(3)=3n,下面利用数学归纳法证明:不等式f(2)<3 n
g(3)对n∈N+恒成立.3 n
易验证当n=1,2,3时不等式恒成立;
假设n=k(k≥3),不等式成立,即3k>(k-1)2k+1
两边乘以3得:3k+1>3(k-1)2k+3=k•2k+1+1+3(k-1)2k-k2k+1+2
又因为3(k-1)2k-k•2k+1+2=2k(3k-3-2k)+2=(k-3)2k+2>0
所以3k+1>k•2k+1+1+3(k-1)2k-k2k+1+2>k•2k+1+1
即n=k+1时不等式成立.
故不等式恒成立.