问题 填空题

若代数式x3+y3+3x2y+axy2含有因式x-y,则a=______,在实数范围内将这个代数式分解因式,得x3+y3+3x2y+axy2=______.

答案

∵代数式x3+y3+3x2y+axy2含有因式x-y,

∴当x=y时,x3+y3+3x2y+axy2=0,

∴令x=y,即x3+x3+3x3+ax3=0,

则有5+a=0,解得a=-5.

将a=-5代入x3+y3+3x2y+axy2,得

x3+y3+3x2y-5xy2

=x3-x2y+4x2y-5xy2+y3

=(x-y)x2+y(x-y)(4x-y)

=(x-y)(x2+4xy-y2

=(x-y)(x+2y+

5
y)(x+2y-
5
y).

故答案为:(x-y)(x+2y+

5
y)(x+2y-
5
y).

多项选择题 案例分析题
单项选择题