问题
填空题
函数y=2x-x2(1≤x≤2)反函数是______.
答案
y=2x-x2=-(x-1)2+1(1≤x≤2)
∴y=2x-x2的值域为[0,1],x=
+11-y
∴x,y互换,得y=
+1 x∈[0,1].1-x
故答案为:y=
+1 x∈[0,1]1-x
函数y=2x-x2(1≤x≤2)反函数是______.
y=2x-x2=-(x-1)2+1(1≤x≤2)
∴y=2x-x2的值域为[0,1],x=
+11-y
∴x,y互换,得y=
+1 x∈[0,1].1-x
故答案为:y=
+1 x∈[0,1]1-x