问题 解答题
我们知道,对于二次函数y=a(x+m)2+k的图象,可由函数y=ax2的图象进行向左或向右平移一次、再向上或向下移一次平移得到,我们称函数y=ax2为“基本函数”,而称由它平移得到的二次函数y=a(x+m)2+k为“基本函数”y=ax2的“朋友函数”.左右、上下平移的路径称为朋友路径,对应点之间的线段距离
m2+k2
称为朋友距离.
由此,我们所学的函数:二次函数y=ax2,函数y=kx和反比例函数y=
k
x
都可以作为“基本函数”,并进行向左或向右平移一次、再向上或向下平移一次得到相应的“朋友函数”.
如一次函数y=2x-5是基本函数y=2x的朋友函数,由y=2x-5=2(x-1)-3朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离=
12+32
=
10

(1)探究一:小明同学经过思考后,为函数y=2x-5又找到了一条朋友路径为由基本函数y=2x先向______,再向下平移7单位,相应的朋友距离为______.
(2)探究二:已知函数y=x2-6x+5,求它的基本函数,朋友路径,和相应的朋友距离.
(3)探究三:为函数y=
3x+4
x+1
和它的基本函数y=
1
x
,找到朋友路径,并求相应的朋友距离.
答案

(1)y=2(x+1)-7,

∴向左平移1个单位(2分);

朋友距离为

12+72
=5
2
(2分);

(2)基本函数为y=x2(1分);

∵原抛物线的顶点坐标为(0,0),新抛物线的顶点坐标为(3,-4),

∴朋友路径为先向右平移3个单位,再向下平移4个单位(1分);

相应的朋友距离

32+42
=5(1分);

(3)函数y=

3x+4
x+1
可化为y=
1
x+1
+3,

∴朋友路径为先向左平移1个单位,再向上平移3个单位.相应的朋友距离为

12+32
=
10
.(3分)

选择题
多项选择题