问题
解答题
设x∈R+且x2+
|
答案
∵x>0,
∴x
=1+y2
?2
≤x2(
+1 2
)y2 2
,
[x2+(2
+1 2
)]y2 2 2
又x2+(
+1 2
)=(x2+y2 2
)+y2 2
=1 2 3 2
∴x
≤1+y2
(2
×1 2
)=3 2 3 2 4
即(x
)max=1+y2
.3 2 4
设x∈R+且x2+
|
∵x>0,
∴x
=1+y2
?2
≤x2(
+1 2
)y2 2
,
[x2+(2
+1 2
)]y2 2 2
又x2+(
+1 2
)=(x2+y2 2
)+y2 2
=1 2 3 2
∴x
≤1+y2
(2
×1 2
)=3 2 3 2 4
即(x
)max=1+y2
.3 2 4