设x2+ax+b2=0是关于x的一元二次方程
(1)若a,b是分别从{1,2,3,4},{0,1,2}中任取的数字,求方程有实根的概率.
(2)若a,b都是从区间[-1,1]中任取的一个数字,求方程有实根的概率.
根据题意,方程x2+ax+b2=0有实根的充要条件为a2≥4b2
(1)由题意,a,b是分别从{1,2,3,4},{0,1,2}中任取的数字;
则a有4种取法,b有3种取法,共有12不同的情况,可以得到12个不同方程,
当a=1时,b=0,满足a2≥4b2,有1种情况满足方程有实根;
当a=2时,b=0、1,满足a2≥4b2,有2种情况满足方程有实根;
当a=3时,b=0,1;满足a2≥4b2,有2种情况满足方程有实根;
当a=4时,b=0、1、2,满足a2≥4b2,有3种情况满足方程有实根;
共有1+2+2+3=8种情况满足方程有实根,
∴p=
=8 12
;2 3
(2)由题意得:-1≤a≤1,-1≤b≤1,右图的正方形区域,
∵△=a2-4b2≥0,
∴(a+2b)(a-2b)≥0,即图中阴影区域,
由图可知p=
=
×1×1×21 2 2×2
.1 4