问题 选择题
甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为(  )
A.
1
9
B.
2
9
C.
7
18
D.
4
9
答案

由题意知本题是一个古典概型,

∵试验包含的所有事件是任意找两人玩这个游戏,共有6×6=36种猜字结果,

其中满足|a-b|≤1的有如下情形:

①若a=1,则b=1,2;②若a=2,则b=1,2,3;

③若a=3,则b=2,3,4;④若a=4,则b=3,4,5;

⑤若a=5,则b=4,5,6;⑥若a=6,则b=5,6,

总共16种,

∴他们“心有灵犀”的概率为P=

16
36
=
4
9

故选D.

单项选择题
单项选择题