问题
选择题
将一个各个面上涂有颜色的正方体锯成64个同样大小的小正方体,从这些小正方体中任取一个,其中恰有2面涂有颜色的概率是( )
|
答案
由题意知本题是一个古典概型,
试验发生包含的事件是正方体锯成64个同样大小的小正方体,共有64个结果,
满足条件的事件是恰有2面涂有颜色的,两面涂有颜色的是在正方体的棱上出现,
每条棱上共有2个,有12条棱,共有24个,
根据古典概型概率公式得到P=
=24 64 3 8
故选C.