问题
填空题
我们知道:两个互为反函数的函数y=2x与y=log2x的图象关于直线y=x成轴对称,利这一性质,若x1和x2分别是2x+x+a=0和log2x+x+a=0的两根,则x1+x2的值为直线y=x与直线y=-x-a的交点的横坐标的2倍,即x1+x2=-a; 由函数y=x3与函数y=
|
答案
∵x1和x2分别是2x+x+a=0和log2x+x+a=0的两根,
则x1+x2的值为直线y=x与直线y=-x-a的交点的横坐标的2倍,即x1+x2=-a;
由此类比推理
∵方程x3+x-3=0的根为x1,方程(x-3)3+x=0的根为x2,
∴x2为
+x-3=0的根,3 x
则x1+x2的值为直线y=x与直线y=-x+3的交点的横坐标的2倍
由于直线y=x与直线y=-x+3的交点的横坐标为3 2
故x1+x2=3
故答案为:3