问题
解答题
解答下列问题: (I)设f(x)=
(1)求f(x)的反函数f-1(x); (2)若u1=1,un=-f-1(un-1),(n≥2),求un; (3)若ak=
|
答案
(1)由y=f(x)=
(x≤-3),两边平方得出y2=x2-9,移向得,x2=y2+9x2-9
∵x≤-3,∴两边开方得出x=-
,(y≥0)y2+9
所以反函数为y=f-1(x)=-
(x≥0)x2+9
(2)由un=-f-1(un-1)得出un=-f-1(un-1)=
(n≥2),两边平方并移向得出un2-un-12=9un-12+9
所以数列{un2}是公差为9的等差数列,且首项u12=1,
un2=1+(n-1)×9=9n-8,
∵un>0,∴un=9n-8
(3)ak=
=1
+9k-8 9k+1
(1 9
-9k+1
),9k-8
∴Sn=
[(1 9
-1)+(10
-19
)+…+(10
-9n+1
)]9n-8 =
(1 9
-1);9n+1