先阅读下列因式分解的过程,再回答所提出的问题:
例1:1+ax+ax(1+ax)=(1+ax)(1+ax)
=(1+ax)2;
例2:1+ax+ax(1+ax)+ax(1+ax)2=(1+ax)(1+ax)+ax(1+ax)2
=(1+ax)2+ax(1+ax)2
=(1+ax)2(1+ax)
=(1+ax)3
(1)分解因式:1+ax+ax(1+ax)+ax(1+ax)2+…+ax(1+ax)n=______;
(2)分解因式:x-1-x(x-1)+x(x-1)2-x(x-1)3+…-x(x-1)2003+x(x-1)2004
(答题要求:请将第(1)问的答案填写在题中的横线上)
(1)1+ax+ax(1+ax)+ax(1+ax)2+…+ax(1+ax)n,
=(1+ax)(1+ax)+ax(1+ax)2+…+ax(1+ax)n,
=(1+ax)2+ax(1+ax)2+…+ax(1+ax)n,
=(1+ax)2(1+ax)+…+ax(1+ax)n,
=(1+ax)3+…+ax(1+ax)n,
=(1+ax)n(1+ax),
=(1+ax)n+1;
(2)x-1-x(x-1)+x(x-1)2-x(x-1)3+…-x(x-1)2003+x(x-1)2004,
=(x-1)(1-x)+x(x-1)2-x(x-1)3+…-x(x-1)2003+x(x-1)2004,
=(x-1)2(-1+x)2-x(x-1)3+…-x(x-1)2003+x(x-1)2004,
=(x-1)2(1-x)+…-x(x-1)2003+x(x-1)2004,
=(x-1)2005.