问题
选择题
若实数x、y、z满足x2+y2+z2=1,则xy+yz+zx的取值范围是( )
|
答案
∵xy+yz+zx≤
+x2+y2 2
+y2+z2 2
=x2+y2+z2=1,x2+z2 2
又∵2(xy+yz+zx)=(x+y+z)2-(x2+y2+z2)≥0-1=-1,
∴xy+yz+zx≥-
.1 2
故选B.
若实数x、y、z满足x2+y2+z2=1,则xy+yz+zx的取值范围是( )
|
∵xy+yz+zx≤
+x2+y2 2
+y2+z2 2
=x2+y2+z2=1,x2+z2 2
又∵2(xy+yz+zx)=(x+y+z)2-(x2+y2+z2)≥0-1=-1,
∴xy+yz+zx≥-
.1 2
故选B.