问题
填空题
已知abc≠0,k=
|
答案
∵k=
=a+b-c c
=a-b+c b
,b+c-a a
∴a+b-c=kc,①
a-b+c=kb,②
b+c-a=ka,③
由①+②+③,得
(a+b+c)=k(a+b+c),
(1)当a+b+c≠0,时,k=1;
∴y=kx+k2-2k+2=x+1,即y=x+1;
又∵一次函数y=kx+k2-2k+2图象上两点为P1(xl,y1),P2 (x2,y2)且|x1-x2|=2,
∴|y1-y2|=2,
∴|P1P2|=
=(x1-x2) 2+(y1-y2)2
=24+4
;2
(2)当a+b+c=0时,a+b=-c,
则由①式,得
-2c=kc,
∵abc≠0,
∴c≠0,
∴k=-2;
y=kx+k2-2k+2=-2x+10,即y=-2x+10;
又∵一次函数y=kx+k2-2k+2图象上两点为P1(xl,y1),P2 (x2,y2)且|x1-x2|=2,
∴|y1-y2|=4,
∴|P1P2|=
=(x1-x2) 2+(y1-y2)2
=24+16
.5
故答案是:2
或22
.5