问题 填空题
已知abc≠0,k=
a+b-c
c
=
a-b+c
b
=
b+c-a
a
,一次函数y=kx+k2-2k+2图象上两点为P1(xl,y1),P2 (x2,y2)且|x1-x2|=2,则|P1P2|=______.
答案

k=

a+b-c
c
=
a-b+c
b
=
b+c-a
a

∴a+b-c=kc,①

a-b+c=kb,②

b+c-a=ka,③

由①+②+③,得

(a+b+c)=k(a+b+c),

(1)当a+b+c≠0,时,k=1;

∴y=kx+k2-2k+2=x+1,即y=x+1;

又∵一次函数y=kx+k2-2k+2图象上两点为P1(xl,y1),P2 (x2,y2)且|x1-x2|=2,

∴|y1-y2|=2,

∴|P1P2|=

(x1-x22+(y1-y2)2
=
4+4
=2
2

(2)当a+b+c=0时,a+b=-c,

则由①式,得

-2c=kc,

∵abc≠0,

∴c≠0,

∴k=-2;

y=kx+k2-2k+2=-2x+10,即y=-2x+10;

又∵一次函数y=kx+k2-2k+2图象上两点为P1(xl,y1),P2 (x2,y2)且|x1-x2|=2,

∴|y1-y2|=4,

∴|P1P2|=

(x1-x22+(y1-y2)2
=
4+16
=2
5

故答案是:2

2
或2
5

判断题
填空题