问题
解答题
把抛物线y=-2x2+4x+1沿坐标轴先向左平移2个单位,再向下平移3个单位,问所得的抛物线与x轴有没有交点,若有,求出交点坐标;若没有,说明理由.
答案
所得的抛物线与x轴有交点
∵y=-2x2+4x+1=-2(x-1)2+3,
∴平移后的解析式是:y=-2(x+1)2.
令y=0,得-2(x+1)2=0,x1=x2=-1.
∴交点坐标为(-1,0).
把抛物线y=-2x2+4x+1沿坐标轴先向左平移2个单位,再向下平移3个单位,问所得的抛物线与x轴有没有交点,若有,求出交点坐标;若没有,说明理由.
所得的抛物线与x轴有交点
∵y=-2x2+4x+1=-2(x-1)2+3,
∴平移后的解析式是:y=-2(x+1)2.
令y=0,得-2(x+1)2=0,x1=x2=-1.
∴交点坐标为(-1,0).