问题 填空题

已知抛物线y=ax2+bx+c(a>0)的对称轴为x=-1,交x轴的一个交点为(x1,0),且0<x1<1,则下列结论:

①b>0,c<0;②a-b+c>0;③b<a;④3a+c>0;⑤9a-3b+c>0

其中正确的命题有______.(请填入正确的序号)

答案

根据题意,得到该抛物线的图象(如图所示)

①∵二次函数y=ax2+bx+c的对称轴x=-

b
2a
=-1<0,a>0

∴b>0;

∵抛物线与y轴交于负半轴,

∴c<0;

故本选项正确;

②根据图示,知

当x=-1时,y<0,即a-b+c<0;故本选项错误;

③∵二次函数y=ax2+bx+c的对称轴x=-

b
2a
=-1,

∴b=2a;

又∵a>0,

∴b-a=a>0,

∴b>a;故本选项错误;

④由图象知,当x=1时,y>0,即a+b+c>0;

又∵b=2a,

∴3a+c>0;故本选项正确;

⑤根据图象知,当x=-3时,y>0,即9a-3b+c>0;故本选项正确;

综上所述,其中正确的命题有①④⑤;

故答案是:①④⑤.

单项选择题
单项选择题