问题
填空题
若实数a,b满足ab-4a-b+1=0 (a>1),则(a+1)(b+2)的最小值为______.
答案
∵ab-4a-b+1═0
∴b=
=4+4a-1 a-1 3 a-1
∴(a+1)(b+2)=6a+
+36a a-1
=6a+
+96 a-1
=6(a-1)+
+156 a-1
≥27(当且仅当a-1=
即a=2时等号成立)1 a-1
故答案为27.
若实数a,b满足ab-4a-b+1=0 (a>1),则(a+1)(b+2)的最小值为______.
∵ab-4a-b+1═0
∴b=
=4+4a-1 a-1 3 a-1
∴(a+1)(b+2)=6a+
+36a a-1
=6a+
+96 a-1
=6(a-1)+
+156 a-1
≥27(当且仅当a-1=
即a=2时等号成立)1 a-1
故答案为27.