问题
填空题
已知方程7x2-(k+13)x+k2-k-2=0有2个不等实根x1,x2,且0<x1<1<x2<2,则实数k的取值范围是______.
答案
设函数f(x)=7x2-(k+13)x+k2-k-2,若0<x1<1<x2<2,
则
,即f(0)>0 f(1)<0 f(2)>0
即k2-k-2>0 7-(k+13)+k2-k-2<0 7×4-2(k+13)+k2-k-2>0
,k2-k-2>0 k2-2k-8<0 k2-3k>0
所以
,解得-2<k<-1或3<k<4.k>2或k<-1 -2<k<4 k>3或k<0
故答案为:-2<k<-1或3<k<4.