问题 填空题

已知坐标平面内,△ABC的各顶点坐标分别是A(0,1),B(2,-3),C(-2,0),△DEF各顶点坐标分别是D(0,2),E(4,-6),F(-4,0),则△ABC与△DEF的面积之比为______.

答案

∵A(0,1),B(2,-3),C(-2,0),

∴由勾股定理得:AC=

(-2-0)2+(0-1)
=
5

AB=

(2-0)2+(-3-1)2
=2
5

BC=

(-2-2)2+(0+3)2
=5,

∵D(0,2),E(4,-6),F(-4,0),

∴DE=

(4-0)2+(-6-2)2
=4
5

EF=

(-4-4)2+(0+6)2
=10,

DF=

(-4-0)2+(0-2)2
=2
5

AC
DF
=
AB
DE
=
BC
EF
=
1
2

∴△ABC△DEF,

∴△ABC与△DEF的面积之比是(

1
2
2=
1
4
=1:4,

故答案为:1:4.

填空题
多项选择题