问题
填空题
已知坐标平面内,△ABC的各顶点坐标分别是A(0,1),B(2,-3),C(-2,0),△DEF各顶点坐标分别是D(0,2),E(4,-6),F(-4,0),则△ABC与△DEF的面积之比为______.
答案
∵A(0,1),B(2,-3),C(-2,0),
∴由勾股定理得:AC=
=(-2-0)2+(0-1)
,5
AB=
=2(2-0)2+(-3-1)2
,5
BC=
=5,(-2-2)2+(0+3)2
∵D(0,2),E(4,-6),F(-4,0),
∴DE=
=4(4-0)2+(-6-2)2
,5
EF=
=10,(-4-4)2+(0+6)2
DF=
=2(-4-0)2+(0-2)2
,5
∴
=AC DF
=AB DE
=BC EF
,1 2
∴△ABC∽△DEF,
∴△ABC与△DEF的面积之比是(
)2=1 2
=1:4,1 4
故答案为:1:4.