问题 解答题

(本小题满分9分)一个袋子中有3个红球和2个黄球,5个球除颜色外完全相同,甲、乙两人先后不放回地从中各取1个球.规定:若两人取得的球的颜色相同则甲获胜,否则乙获胜.

(1) 求两个人都取到黄球的概率;

(2) 计算甲获胜的概率.

答案

(1);(2).

题目分析:(1) 设3个红球编号为1、2、3;两个黄球编号为4、5,分别列出甲乙两人先后不放回地各取一个球的所有基本事件,然后找到其中的两人都取到黄球的事件,;

(2)甲获胜指的是两人取到相同颜色的球,即两个红的或是两个黄的.看其中有几个基本事件.

解:设3个红球编号为1、2、3;两个黄球编号为4、5.则一切可能结果组成的基本事件有(1,2)、(1,3)、(1,4)、(1,5)、(2,3)、(2,4)、(2,5)、(3,4)、(3,5)、(4,5)共10个。       (2分)

两个人都取得黄球的事件有(4,5)共1个。因此两个人都取得黄球概率为P=

(6分(注意格式,要设事件,要作答))

(2)两个人取得相同颜 * * 的事件有(1,2)、(1,3)、(2,3)、(4,5)共4个

故甲获胜的概率为P=.   (9分(注意格式,要设事件,要作答))

单项选择题
单项选择题