已知:a>0,b>0,a+b=1, (1)求证:
(2)求:
|
(1)证明:因为1=a+b≥2
,所以ab≤ab
,所以 1 4
(a+b)+ab+1 2
≤1,1 4
所以
≤1,从而有 2+2 (a+
)(b+1 2
)1 2
≤4,(a+
)(b+1 2
)1 2
即:(a+
)+(b+1 2
)+2 1 2
≤4,(a+
)(b+1 2
)1 2
即:(
+a+ 1 2
)2≤4,所以原不等式成立.b+ 1 2
(2)
+1 a
+1 b
=1 ab
,2 ab
∵a>0,b>0,a+b=1,
∴
≤ab
=a+b 2
,即ab≤1 2
当且仅当a=b=1 4
是等号成立1 2
∴
+1 a
+1 b
=1 ab
≥8,即当a=b=2 ab
时,1 2
+1 a
+1 b
的最小值为8.1 ab