问题
填空题
如果存在实数x,y,z,使得x>y>z,且
|
答案
x>y>z,且
+1 x-y
≤1 y-z
成立,两边同乘以x-z得a z-x
(x-z)(
+1 x-y
)≤-a,而(x-z)(1 y-z
+1 x-y
)=[(x-y)+(y-z)](1 y-z
+1 x-y
)=2+1 y-z
+y-z x-y
≥2+2x-y y-z
=4,当且仅当
•y-z x-y x-y y-z
=y-z x-y
,即x-y=y-z时取得等号.x-y y-z
所以4≤-a,即a≤-4,a的最大值是-4.
故答案为:-4.