问题
解答题
设函数f(x)=
(Ⅰ)若函数f(x)在x=3处取得极小值是
(Ⅱ)求函数f(x)的单调递增区间; (Ⅲ)若函数f(x)在(-1,1)上有且只有一个极值点,求实数a的取值范围. |
答案
(I)∵f′(x)=x2-2(a+1)x+4a(3分)
∴f′(3)=9-6(a+1)+4a=0得 a=
(4分)3 2
∵f(3)=
解得:b=-4(5分)1 2
(II)∵f′(x)=x2-2(a+1)x+4a=(x-2a)(x-2)
令f′(x)=0,即x=2a或x=2.(7分)
当a>1时,2a>2,∴f′(x)>0时,x>2a或x<2,即f(x)的单调递增区间为(-∞,2)和(2a,+∞).(8分)
当a=1时,f′(x)=(x-2)2≥0,即f(x)的单调递增区间为(-∞,+∞).(9分)
当a<1时,2a<2,∴f′(x)>0时,x<2a或x>2,即f(x)的单调递增区间为(-∞,2a)和(2,+∞).(10分)
(Ⅲ)由题意可得:
(12分)a<1 f′(-1)•f′(1)<0
∴(2a-1)(2a+1)<0
∴-
<a<1 2 1 2
∴a的取值范围(-
,1 2
)(14分)1 2