问题
选择题
函数f(x)=1+logax(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny-2=0上,其中mn>0,则
|
答案
∵f(1)=1+loga1=1,∴函数f(a)=1+logax(a>0,a≠1)的图象恒过定点A(1,1),
∵点A(1,1)在直线mx+ny-2=0上,∴m+n-2=0.∵mn>0,∴m>0,n>0.
∴
+1 m
=1 n
(m+n)(1 2
+1 m
)=1 n
(2+1 2
+n m
)≥m n
(2+21 2
)=2,当且仅当m+n=2,
×n m m n
=n m
,m>0,n>0即m=n=1时取等号.m n
故选B.