问题
填空题
若a>0,b>0,且
|
答案
∵a>0,b>0,且
+1 2a+b
=1,1 b+1
∴a+2b=
-(2a+b)+3(b+1) 2
=3 2
•((2a+b)+3(b+1) 2
+1 2a+b
)-1 b+1 3 2
=
[1+3+1 2
+3(b+1) 2a+b
]-2a+b b+1 3 2
≥
(4+21 2
)-
•3(b+1) 2a+b 2a+b b+1
=3 2
-4+2 3 2
=3 2
.2
+13 2
当且仅当
=3(b+1) 2a+b
,a>0,b>0,且2a+b b+1
+1 2a+b
=1,即b=1 b+1
,a=3 3
+1 2
时取等号.3 3
∴a+2b的最小值为
.2
+13 2
故答案为
.2
+13 2