问题 填空题
若a>0,b>0,且
1
2a+b
+
1
b+1
=1
,则a+2b的最小值为______.
答案

∵a>0,b>0,且

1
2a+b
+
1
b+1
=1,

∴a+2b=

(2a+b)+3(b+1)
2
-
3
2
=
(2a+b)+3(b+1)
2
•(
1
2a+b
+
1
b+1
)
-
3
2

=

1
2
[1+3+
3(b+1)
2a+b
+
2a+b
b+1
]-
3
2

1
2
(4+2
3(b+1)
2a+b
2a+b
b+1
)-
3
2
=
4+2
3
2
-
3
2
=
2
3
+1
2

当且仅当

3(b+1)
2a+b
=
2a+b
b+1
,a>0,b>0,且
1
2a+b
+
1
b+1
=1
,即b=
3
3
,a=
1
2
+
3
3
时取等号.

∴a+2b的最小值为

2
3
+1
2

故答案为

2
3
+1
2

选择题
多项选择题 X型题