问题 填空题

在有理数范围内因式分

(1)16(6x-1)(2x-1)(3x+1)(x-1)+25=______.

(2)(6x-1)(2x-1)(3x-1)(x-1)+x2=______.

(3)(6x-1)(4x-1)(3x-1)(x-1)+9x4=______.

答案

(1)16(6x-1)(2x-1)(3x+1)(x-1)+25,

=[(6x-1)(4x-2)][(6x+2)(4x-4)]+25,

=(24x2-16x+2)(24x2-16x-8)+25,

=(24x2-16x)2-6(24x2-16x)-16+25,

=(24x2-16x)2-6(24x2-16x)+9,

=(24x2-16x-3)2

(2)(6x-1)(2x-1)(3x-1)(x-1)+x2

=[(6x-1)(x-1)][(2x-1)(3x-1)]+x2

=(6x2-7x+1)(6x2-5x+1)+x2

=(6x2-6x+1-x)(6x2-6x+1+x)+x2

=(6x2-6x+1)2-x2+x2

=(6x2-6x+1)2

(3)(6x-1)(4x-1)(3x-1)(x-1)+9x4

=[(6x-1)(x-1)][(4x-1)(3x-1)]+9x4

=(6x2-7x+1)(12x2-7x+1)+9x4

令t=6x2-7x+1,则12x2-7x+1=t+6x2

∴原式=t(t+6x2)+9x4

=t2+6•t•x2+9x4

=(t+3x22

=(6x2-7x+1+3x22

=(9x2-7x+1)2

多项选择题
多项选择题