方程(x3-3x2+x-2)(x3-x2-4x+7)+6x2-15x+18=0的全部相异实根是______.
设A=x3-2x2-
x+3 2
,B=x2-5 2
x+5 2 9 2
则原方程转化为(A-B)(A+B)+6B-9=0,即
A2-B2+6B-9=0,A2-(B2-6B+9)=0,A2-(B-3)2=0,
(A+B-3)(A-B+3)=0,
A+B-3=0或A-B+3=0.
①若A+B-3=0,即x3-x2-4x+4=0,
(x2-4)(x-1)=0,
x2-4=0或x-1=0,
x=±2或1;
②若A-B+3=0,
即x3-3x2+x+1=0,(x-1)(x2-2x-1)=0,
∴x-1=0或x2-2x-1=0,
x=1或1±2
∴原方程的根是1(2重根),±2,1±2
故答案为1,±2,1±2