问题 填空题

已知a>0,b>0,c>0,且a+b+c=3,m=a2+b2+c2,则m的最小值为 ______

答案

∵a+b+c=3,

∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=9

∴a2+b2+c2=9-(2ab+2ac+2bc)

∵2ab≤a2+b2,2ac≤a2+c2,2bc≤b2+c2,(a=b=c时等号成立)

∴9-(2ab+2ac+2bc)≥9-2(a2+b2+c2),即a2+b2+c2≥9-2(a2+b2+c2),

∴a2+b2+c2≥3,即m≥3

故m的最小值为3

故答案为:3

单项选择题 A1/A2型题
单项选择题