问题 填空题

分解因式:(x4-4x2+1)(x4+3x2+1)+10x4=______.

答案

(x4-4x2+1)(x4+3x2+1)+10x4

=[(x4+1)2-x2(x4+1)-12x4]+10x4

=(x4+1)2-x2(x4+1)-2x4

=(x4+1-2x2)(x4+1+x2),

=(x2-1)2[(x2+1)2-x2],

=(x+1)2(x-1)2(x2+x+1)(x2-x+1).

故答案为:(x+1)2(x-1)2(x2+x+1)(x2-x+1).

单项选择题
判断题