问题
选择题
若函数f(x)=2mx+4在[-2,1]上存在x0,使f(x0)=0,则实数m的取值范围( )
|
答案
由题意知m≠0,∴f(x)是单调函数,
又在[-2,1]上存在x0,使f(x0)=0,
∴f(-2)f(1)≤0,
即(-4m+4)(2m+4)≤0,解得m≤-2或m≥1.
故选:D.
若函数f(x)=2mx+4在[-2,1]上存在x0,使f(x0)=0,则实数m的取值范围( )
|
由题意知m≠0,∴f(x)是单调函数,
又在[-2,1]上存在x0,使f(x0)=0,
∴f(-2)f(1)≤0,
即(-4m+4)(2m+4)≤0,解得m≤-2或m≥1.
故选:D.