问题 选择题
函数f(x,θ)=
x2-x-xsinθ+8
x-1-sinθ
(x>2)的最小值为(  )
A.4
2
B.2
2
C.1+4
2
D.-1+4
2
答案

∵x>2,

∴x-1-sinθ>0,

f(x,θ)=

x2-x-xsinθ+8
x-1-sinθ
=
x(x-1-sinθ)+8
x-1-sinθ
=x+
8
x-1-sinθ
=x-1-sinθ+
8
x-1-sinθ
+1+sinθ≥2
(x-1-sinθ)•
8
x-1-sinθ
+1+sinθ,

当且仅当x-1-sinθ=

8
x-1-sinθ
即x-1-sinθ=2
2
此时x=1+2
2
+sinθ取等号;

而sinθ∈[-1,1],

∴当sinθ=-1,x=2

2
时,函数f(x,θ)=
x2-x-xsinθ+8
x-1-sinθ
(x>2)取最小值为4
2

故选A.

问答题 简答题
单项选择题