问题 填空题
实数x,y满足1+cos2(2x+3y-1)=
x2+y2+2(x+1)(1-y)
x-y+1
,则xy的最小值是______.
答案

∵1+cos2(2x+3y-1)=

x2+y2+2(x+1)(1-y)
x-y+1

∴1+cos2(2x+3y-1)=

x2+y2+2x+2-2xy-2y
x-y+1

∴1+cos2(2x+3y-1)=

(x-y)2+2(x-y)+2
x-y+1

∴1+cos2(2x+3y-1)=

(x-y+1)2+1
x-y+1

∴1+cos2(2x+3y-1)=(x-y+1)+

1
x-y+1

(x-y+1)+

1
x-y+1
≥2,或(x-y+1)+
1
x-y+1
≤-2

1≤1+cos2(2x+3y-1)≤2

故1+cos2(2x+3y-1)=(x-y+1)+

1
x-y+1
=2

此时x-y+1=1,即x=y

2x+3y-1=kπ,即5x-1=kπ,x=

kπ+1
5
(k∈Z)

xy=x2=

(kπ+1)2
25
(k∈Z)

当k=0时,xy取得最小值

1
25

故答案为:

1
25

多项选择题
单项选择题