问题 填空题
设a2+2a-1=0,b4-2b2-1=0,且1-ab2≠0,则(
ab2+b2-3a+1
a
)
5
=______.
答案

∵a2+2a-1=0,b4-2b2-1=0,

∴(a2+2a-1)-(b4-2b2-1)=0,

化简之后得到:(a+b2)(a-b2+2)=0,

若a-b2+2=0,即b2=a+2,则1-ab2=1-a(a+2)=1-a2-2a=-(a2+2a-1),

∵a2+2a-1=0,

∴-(a2+2a-1)=0,与题设矛盾

∴a-b2+2≠0,

∴a+b2=0,即b2=-a,

(

ab2+b2-3a+1
a
)5

=(

-a2-a -3a+1
a
)5

=-(

a2+2a+2a-1
a
)5

=-(

2a
a
5

=-25

=-32.

故答案为-32.

解法二:

∵a2+2a-1=0,

∴a≠0,

∴两边都除以-a2,得

1
a2
-
2
a
-1=0

又∵1-ab2≠0,

∴b2

1
a
而已知b4-2b2-1=0,

1
a
和b2是一元二次方程x2-2x-1=0的两个不等实根

1
a
+b2=2,
1
a
×b2=
b2
a
=-1,

∴(ab2+b2-3a+1)÷a=b2+

b2
a
-3+
1
a
=(b2+
1
a
)+
b2
a
-3=2-1-3=-2,

∴原式=(-2)5=-32.

选择题
多项选择题