问题 解答题

已知实数x,y满足x4+x2=3,y4-y2=3.求x4+y4的值.

答案

∵x4+x2=3①,y4-y2=3②,

①-②,得(x4+x2)-(y4-y2)=3-3,

∴(x2+y2)(x2-y2+1)=0,

∵x≠0,∴x2+y2≠0,

∴x2-y2+1=0,

即x2-y2=-1③.

①+②,得(x4+x2)+(y4-y2)=3+3,

∴(x4+y4)+(x2-y2)=6,

把③代入上式,得x4+y4=7.

故答案为:7.

多项选择题
单项选择题