问题
填空题
已知:a、b满足a3-3a2+5a=l,b3-3b2+5b=5,则a+b=______•
答案
∵a3-3a2+5a=1,
∴(a-1)3+2(a-1)+2=0,
∵b3-3b2+5b=5,
∴(b-1)3+2(b-1)-2=0,
设a-1=x,b-1=y,
则x3+2x+2=0,y3+2y-2=0,
两式相加可得x3+y3+2(x+y)=0,
化简整理得(x+y)(
x2+1 2
y2+1 2
(x-y)2+2)=0,1 2
∴x+y=0,
即a-1+b-1=0,
∴a+b=2.
故答案为:2.