问题 填空题

如果a=2003x+2001,b=2003x+2002,c=2003x+2003,那么代数式a2+b2+c2-ab-ac-bc的值等于______.

答案

∵a=2003x+2001,b=2003x+2002,c=2003x+2003

∴a-b=-1,b-c=-1,a-c=-2

∴a2+b2+c2-ab-ac-bc

=

1
2
(2a2+2b2+2c2-2ab-2ac-2bc )

=

1
2
[(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ac+c2)]

=

1
2
[(a-b)2+(b-c)2+(a-c)2]

=

1
2
(1+1+4)

=3

故答案为3

单项选择题
单项选择题