问题
解答题
(1)分解因式:(x-1)2+2(1-x)y+y2
(2)已知x-y=4,xy=5,求xy3-2x2y2+xy3的值.
答案
(1)(x-1)2+2(1-x)y+y2
=(x-1)2-2(x-1)y+y2
=(x-1-y)2;
(2)∵x-y=4,xy=5,
∴xy3-2x2y2+xy3
=xy(y2-2xy+x2)
=xy(y-x)2
=5×16
=80.
(1)分解因式:(x-1)2+2(1-x)y+y2
(2)已知x-y=4,xy=5,求xy3-2x2y2+xy3的值.
(1)(x-1)2+2(1-x)y+y2
=(x-1)2-2(x-1)y+y2
=(x-1-y)2;
(2)∵x-y=4,xy=5,
∴xy3-2x2y2+xy3
=xy(y2-2xy+x2)
=xy(y-x)2
=5×16
=80.