问题
选择题
将x5+x4+1因式分解得( )
A.(x2+x+1)(x3+x+1)
B.(x2-x+1)(x3+x+1)
C.(x2-x+1)(x3-x+1)
D.(x2+x+1)(x3-x+1)
答案
原式=x3(x2+x+1)-(x3-1)
=x3(x2+x+1)-(x-1)(x2+x+1)
=(x2+x+1)(x3-x+1)
故选D.
将x5+x4+1因式分解得( )
A.(x2+x+1)(x3+x+1)
B.(x2-x+1)(x3+x+1)
C.(x2-x+1)(x3-x+1)
D.(x2+x+1)(x3-x+1)
原式=x3(x2+x+1)-(x3-1)
=x3(x2+x+1)-(x-1)(x2+x+1)
=(x2+x+1)(x3-x+1)
故选D.