问题
解答题
若抛物线y=ax2+x+2经过点(-1,0).
(1)求a的值,并写出这个抛物线的顶点坐标;
(2)若点P(t,t)在抛物线上,则点P叫做抛物线上的不动点,求出这个抛物线上所有不动点的坐标.
答案
(1)∵抛物线经过点(-1,0),
∴(-1)2•a+(-1)+2=0,解得a=-1.
∴抛物线y=-x2+x+2的顶点坐标为(
,1 2
).9 4
(2)根据题意,得-t2+t+2=t.解得t=±
,2
∴这个抛物线上有两个不动点,坐标分别为(
,2
)和(-2
,-2
).2