问题
选择题
把x2(x+1)-y(xy+x)分解因式为( )
A.x(x-y)(x+y+1)
B.x(x+y)(x-y+1)
C.x(x-y)(x-y-1)
D.x(x-y)(x+y-1)
答案
x2(x+1)-y(xy+x)
=x2(x+1)-xy(y+1)
=x(x2+x-y2-y)
=x[(x2-y2)+(x-y)]
=x[(x+y)(x-y)+(x-y)]
=x(x-y)(x+y+1).
故选A.