问题
填空题
已知函数f(x)=-x3+3x2+9x+a在区间[-2,2]上存在零点,那么实数a的取值范围是______.
答案
①f′(x)=-3x2+6x+9=-3(x+1)(x-3),
当x<-1或x>3时,f′(x)<0,当-1<x<3时,f′(x)>0,
所以f(x)在(-∞,-1),(3,+∞)上单调递减;在(-1,3)上单调递增.
所以当x=-1时f(x)取得极小值f(-1)=-6+a,f(-2)=2+a,f(2)=22+a.
由于函数f(x)=-x3+3x2+9x+a在区间[-2,2]上存在零点,
则
解得-22≤m≤6,f(-1)=-6+a≤0 f(2)=22+a≥0
所以当函数f(x)=-x3+3x2+9x+a在区间[-2,2]上存在零点时,实数a的取值范围是[-22,6].
故答案为:-22≤m≤6.