问题 解答题

把下列各式分解因式:

(1)x4-7x2+1;

(2)x4+x2+2ax+1-a2

(3)(1+y)2-2x2(1-y2)+x4(1-y)2

(4)x4+2x3+3x2+2x+1.

答案

(1)x4-7x2+1

=x4+2x2+1-9x2

=(x2+1)2-(3x)2

=(x2+3x+1)(x2-3x+1);

(2)x4+x2+2ax+1-a2

=x4+2x2+1-x2+2ax-a2

=(x2+1)-(x-a)2

=(x2+1+x-a)(x2+1-x+a);

(3)(1+y)2-2x2(1-y2)+x4(1-y)2

=(1+y)2-2x2(1-y)(1+y)+x4(1-y)2

=(1+y)2-2x2(1-y)(1+y)+[x2(1-y)]2

=[(1+y)-x2(1-y)]2

=(1+y-x2+x2y)2

(4)x4+2x3+3x2+2x+1

=x4+x3+x2+x3+x2+x+x2+x+1

=x2(x2+x+1)+x(x2+x+1)+x2+x+1

=(x2+x+1)2

单项选择题 共用题干题
判断题