问题 选择题

当x-y=1时,那么x4-xy3-x3y-3x2y+3xy2+y4的值是(  )

A.-1

B.0

C.1

D.2

答案

x4-xy3-x3y-3x2y+3xy2+y4

=(x4-xy3)+(y4-x3y)+(3xy2-3x2y)

=x(x3-y3)+y(y3-x3)+3xy(y-x)

=(x3-y3)(x-y)-3xy(x-y)

=(x-y)(x3-y3-3xy)

=(x-y)[(x-y)(x2+xy+y2)-3xy]

把x-y=1代入得,

原式=1×[1×(x2+xy+y2)-3xy]

=x2-2xy+y2=(x-y)2

∵x-y=1,

∴原式=1.

故选C.

单项选择题
单项选择题