问题 解答题
已知函数f(x)=
(x+1)4+(x-1)4
(x+1)4-(x-1)4
(x≠0).
(Ⅰ)若f(x)=x且x∈R,则称x为f(x)的实不动点,求f(x)的实不动点;
(Ⅱ)在数列{an}中,a1=2,an+1=f(an)(n∈N*),求数列{an}的通项公式.
答案

(Ⅰ)∵f(x)=

x4+6x2+1
4x3+4x
,且f(x)=x,

x4+6x2+1
4x3+4x
=x⇒3x4-2x2-1=0⇒x2=1或x2=-
1
3
(舍去),

所以x=1或-1,即f(x)的实不动点为x=1或x=-1.

(Ⅱ)由条件得an+1=

(an+1)4+(an-1)4
(an+1)4-(an-1)4
an+1+1
an+1-1
=
(an+1)4
(an-1)4
=(
an+1
an-1
)4

从而有ln

an+1+1
an+1-1
=4ln
an+1
an-1

ln

a1+1
a1-1
=ln3≠0,

∴数列{ln

an+1
an-1
}是首项为ln3,公比为4的等比数列,

ln

an+1
an-1
=4n-1ln3⇒
an+1
an-1
=34n-1an=
34n-1+1
34n-1-1
(n∈N*).

问答题 简答题
单项选择题