问题
解答题
已知函数f(x)=
(Ⅰ)若f(x)=x且x∈R,则称x为f(x)的实不动点,求f(x)的实不动点; (Ⅱ)在数列{an}中,a1=2,an+1=f(an)(n∈N*),求数列{an}的通项公式. |
答案
(Ⅰ)∵f(x)=
,且f(x)=x,x4+6x2+1 4x3+4x
∴
=x⇒3x4-2x2-1=0⇒x2=1或x2=-x4+6x2+1 4x3+4x
(舍去),1 3
所以x=1或-1,即f(x)的实不动点为x=1或x=-1.
(Ⅱ)由条件得an+1=
⇒(an+1)4+(an-1)4 (an+1)4-(an-1)4
=an+1+1 an+1-1
=((an+1)4 (an-1)4
)4,an+1 an-1
从而有ln
=4lnan+1+1 an+1-1
,an+1 an-1
∵ln
=ln3≠0,a1+1 a1-1
∴数列{ln
}是首项为ln3,公比为4的等比数列,an+1 an-1
∴ln
=4n-1ln3⇒an+1 an-1
=34n-1⇒an=an+1 an-1
(n∈N*).34n-1+1 34n-1-1